品书中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
品书中文 >  离语 >   第300章 丸辣

文本挖掘与分析名词解释10道题,英文缩写,例如RNN,LdA,mLp,FNN模型和算法的理解(word2vec等模型原理),损失函数,语言模型的概念,代码类:根据公式\/输出写源代码交叉熵损失设置参数解决数据不平衡1自然语言处理自然语言处理研究实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理技 术发展经历了基于规则的方法、基于统计学习的方法和基于深度学习的方法三个阶段。自然语言处理 由浅入深的四个层面分别是形式、语义、推理和语用,当前正处于由语义向推理的发展阶段。2文本分类文本分类是机器对文本按照一定的分类体系自动标注类别的过程, 也是自然语言处理最早的应用领域之一。你能想到哪些自动文本分类 应用? 垃圾邮件分类,新闻类型分类,...情感分析情感分析也可以认为是文本分类的一个子类型。情感分析往往应 用于电商的用户评价分析,微博等自媒体的用户留言倾向分析,或者 公共事件的舆情分析。3信息抽取信息抽取是采用机器学习算法从非结构化文本中自动抽取出用户感兴趣的内容,并进 行 结构化处理。例如命名实体识别、实体关系抽取、事件抽取、因果关系抽取文本生成包括自动文章撰写、自动摘要生成等内容4信息检索信息检索指信息按一定的方式组织起来,并根据用户的需要找出有关的信息的过程和技术。搜 索引擎是当前主流的信息检索方式,从最初的关键词匹配算法到如今的语义检索技术, 用户已经能够随心所欲的检索自 己所需的信息。

中心度:在图论和网络分析中,中心度用来衡量节点在图中的重要 性,中心度并不是节点本身带有的属性,而是一种结构属性, 是在图或网络结构下节点才具有的属性。中心度可用来解决不同领域的问题: 例如在社交网络中寻找影响力最大的用户,在互联网或城市网络中寻找 关键的基础设施,以及在疾病网络中发现超级传播者度中心度:指节点与其他节点相连边的数量,即通过节点的邻居 数目(局部信息)来计算节点度重要程度。 基本思想:节点与网络中其他节点的交互都是通过其邻居节点来 进行的,因此节点的邻居越多,意味着该节点能够 向外传递的信息越多,从网络外部接受信息也越容易。 有向网络中,又可以定义出度中心度、入度中心度。

社区发现是根据网络中的边的连接模式,把网络顶点划分为群组。将网络顶点划分为群组后最常见的属性是,同一群组内部的顶点之间紧密连 接,而不同群组之间只有少数边连接。社团发现的目的是就要找到网络内部不同群组之间的自然分割线。简而言之,它是一个把网络自然划分为顶点群组的问题,从而使得群组内有 许多边,而群组之间几乎没有边。然而,“许多”和“几乎没有”到底是多少, 这个问题值得商榷,为此提出了多种不同的定义,从而产生了不同的社团发 现算法8基于层次聚类的算法。

第一阶段:称为modularity optimization,主要是将每个节点划 分到与其邻接的节点所在的社区中,以使得模块度的 值不断变大; 第二阶段:称为munity Aggregation,主要是将第一步划分 出来的社区聚合成为一个点,即根据上一步生成的社 区结构重新构造网络。重复以上的过程,直到网络中 的结构不再改变为止。步骤:1.初始化,将每个点划分在不同的社区中; 2.对每个节点,将每个点尝试划分到与其邻接的点所在的社区中,计算此时 的模块度,判断划分前后的模块度的差值Δq是否为正数,若为正数, 则接受本次的划分,若不为正数,则放弃本次的划分; 3.重复以上的过程,直到不能再增大模块度为止; 4.构造新图,新图中的每个点代表的是步骤3中划出来的每个社区,继续执 行步骤2和步骤3,直到社区的结构不再改变为止。 !在2中计算节点的顺序对模块度的计算是没有影响的,而是对计算时间有影响。

数据缺失的原因数据采集过程可能会造成数据缺失;数据通过网络等渠道进行传输时也可能出现数据丢失或出错,从而造成 数据缺失;在数据整合过程中也可能引入缺失值删除法删除法通过删除包含缺失值的数据,来得到一个完整的数据子集. 数据的 删除既可以从样本的角度进行,也可以从特征的角度进行。 删除特征:当某个特征缺失值较多,且该特征对数据分析的目标影响 不大时, 可以将该特征删除 删除样本:删除存在数据缺失的样本。 该方法适合某些样本有多个特征存在缺失值,且存在缺失值的样本占 整个数据集样本数量的比例不高的情形 缺点:它以减少数据来换取信息的完整,丢失了大量隐藏在这些被删除数据 中的信息;在一些实际场景下数据的采集成本高且缺失值无法避免,删除法可 能会造成大量的资源浪费均值填补计算该特征中非缺失值的平均值(数值型特征)或众数(非数值型特 征),然后使用平均值或众数来代替缺失值缺点一:均值填补法会使得数据过分集中在平均值或众数上,导致特征 的方差被低估 缺点二:由于完全忽略特征之间的相关性,均值填补法会大大弱化特征 之间的相关性随机填补随机填补是在均值填补的基础上加上随机项,通过增加缺失值的随机性 来改善缺失值分布过于集中的缺陷。

等距离散化(Equal-width discretization):将数据划分为等宽间隔的区间,这种方法需要先确定区间的个数n,再根据最小值min和最大值max计算出每个区间的间隔长度(max-min)\/n,相邻两个区间的宽度都是相同的。等频率离散化(Equal-Frequency discretization):将数据划分为相同的数量级别,每个区间包含的记录数相等。这种方法首先将数据按照大小排序,然后将排序后的数据分成n等份,每份个数为数据总数\/n,在每个区间的边界处划分数据。基于聚类的离散化:将数据分成若干个簇,簇内的数据相似度高,簇间数据相似度低。具体实现时可以使用聚类算法如k-means、dbScAN等。自适应离散化:通过迭代的方式,不断根据数据的特性调整区间的边界,以达到最优的离散化效果。下面分别以等距离散化、等频率离散化、基于聚类的离散化和自适应离散化为例子,分别列出具体的例题:等距离散化假设我们有一个包含1000个学生身高数据的数据集,我们想将身高离散化成10个等宽的区间,以下是离散化方法:计算身高的最小值和最大值,假设最小值为140cm,最大值为200cm。计算每个区间的宽度,假设共10个区间,每个区间的宽度为(200-140)\/10 = 6cm。根据每个学生的身高,将其分入相应的区间。等频率离散化假设我们有一个包含200家公司的财务数据的数据集,我们想将每个公司的营业收入离散化成5个等频率的区间,以下是离散化方法:将所有公司的营业收入升序排序。计算每个区间的数据数量,在本例中,因为共有200个公司,所以每个区间包含40个公司。找到每个区间的边界,比如第一个区间的最小值和第二个区间的最大值,这两个值之间的所有公司的营业收入都属于第一个区间。

品书中文推荐阅读:玄幻:老婆绝世仙子,我却要逃婚绑定变美系统,绿茶在位面杀疯了诡异捞尸:开局暴打千年水鬼快穿:挖野菜系统崩溃了重生大小姐野又飒,撩翻禁欲大佬四合院:生那么多孩子!怪我咯穿越八零:上啃老下啃小中间啃闺商界大佬被撩后马甲娇妻套路多灵轩心动快穿之疯批反派在线作死快穿:钓系美人穿成黑月光之后开局策反病娇女BOSS的我无敌原神获得造物主系统的诸天之旅异世界:种地摆烂,怎么成领主了傅同学,我知道你暗恋我结婚两年未见面,军医老公回来了恶魂觉醒后,全宗门哭着求我原谅太师祖在下,孽徒桀桀桀!穿越年代文:工具人拒绝剧情哼,老娘才不想当什么丘比特火行天下末世向导:四大哨兵争着宠霹出个天尊化神老祖作香童是认真的柯学破案?不,我是修仙者!豪门奶爸开局,养个外挂小奶娃穿成小炮灰的姐姐,改变命运摸一摸就能修仙,还要脸干什么!快穿:洗白的郎君他最宠夫国运:扮演张麒麟,我是女版小哥真千金驻岛开荒,嫁禁欲军官赢麻神卦狂妃又在撩人了世界与尔青云仙梦张悦的逆袭没错,我哥和我爹都是大佬末日重生:鬼观音她畸变成神抗战:从远征军开始亮剑:之超级军工系统从模拟开始成为诡异神灵小孕妻齁甜,被绝嗣大佬抱回家宠快穿之云华真君圆满之旅快穿:我家宿主超厉害的,嗷呜盗墓:修仙修到青铜门碎裂掌控被未婚夫送去和亲后,我把他刀了快穿之改变be世界一夜情后,穆总失控综影视之绿茶专门挖墙脚刑侦六组全家读我心后杀麻了,我负责吐槽
品书中文搜藏榜:异兽迷城半相热恋快穿:我在异界客串路人甲家外火影世界的修士开局逃荒,女尊小混子她吃喝不愁和狂野总裁同房后他说我只是陌生人墓虎带着两宝去逃荒,我逃成了首富穿越乱世,我有空间我怕谁秦老六的生活日常奥特次元:羁绊之力全能站姐变爱豆后成顶流了高嫁京圈大佬,渣前任悔疯了!末世,女主她拿百亿物资杀疯了孤独摇滚!属于老兵的孤独!穿越知否之我是墨兰末世,恋爱脑杀了最后一位神性转魔王的异世界冒险脑叶公司:逐渐离谱的员工我,AI凡人闯仙界首辅肥妻有空间小宫女娇软妩媚,一路荣宠成太后后妈恶毒后妈爽,后妈日子过得好陆爷的闪婚新妻明日方舟:构史学主演她是一池春水文昭皇后传邪祟复苏,我为阴世主综漫:作品太刀,雪乃让我别写了玄学直播间,大佬又算命攒功德啦八零软妻人间清醒,首长别茶了!孤爱的哥哥居然是敌国皇亲快穿:战神大人只想找lp贴贴嫡女谋略:妖孽夫君请上门百字日记白日深诱职业魅魔,青梅校花不放过沈氏家族美人祭莫爷养的小公主我用重生埋葬他勾魂的眼神方舟里的后勤官快穿之鼠鼠我呀,太上进了四合院:我何雨柱,国之栋梁斗破:天命反派,云韵哭惨了皇后,你逃不掉的重生成草,我修妖也修仙我花钱超猛,系统嘎嘎宠我!
品书中文最新小说:团宠妹妹旺全家,全球大佬排队宠!萌学园:我靠库洛牌拯救遗憾重生宠妾进阶录之缘起综影视:她不懂情时间胶囊715快穿:万人迷她不做任务一朝穿越成乡下农女轮回录:魔族小妹拐了妖族团宠全网黑学渣竟是国宝级太子妃可是裴相她好男风啊安魂鬼事录帝白翎重生拒婚,首辅却一夜白头求原谅无敌公主:红棉大帝SSS级雄虫亲晕军雌上将家有小福宝,荒年也丰收我以柴刀问苍天综影视假期脑洞四合院:拒绝秦淮如,踢爆易中海破茧成凰前男友的追悔录九霄凌仙诀盗墓:我携永恒家族吞噬诸天在男神锅里沦陷的365天轮回修仙路在星际当直男但长成小白脸怎么办穿越七零:大佬,你的孩子重生了六零胖崽福运旺!全家躺赢万元户铁血盛唐:从废太子到万国至尊阴阳箓笔记新人写作技巧京圈姬爷的糖糖又想双修啦快穿之气运男主的黑月光风雨中的野菊花驯龙高手:天命代言人路人炮灰,但万人迷听懂毛茸茸说话,我成了警局团宠后娘不好当之四处找钱路重生后被京圈太子娇养了血族小公主觉醒后,狼王跪了转生索罗亚,被精灵老婆包围了梦幻西游之龙宫也疯狂武道霸主:小保安也能穿越?盗墓之当诡异绑定神豪系统水仙花的执念时爷破防了,每天都想求复婚!领袖之证:汽车人与东方神秘力量穿书后她抢了小姐身份四合院:一个都跑不了陛下,不好了!娘娘她又去种田了仙途萌宠缘:双仙欢闹逆袭路