品书中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
品书中文 >  离语 >   第274章 讲座

1.3.2 研究方法

本文以有关电力行业 LcA 的近十年的英文文献为研究对象,并根据每篇文章的元数据构建数据

库。进行文档分割,将文件分割为更小的部分或章节,分区后使其更容易分类和提取文本,将文档

元素列表存储并跟踪从文档中提取的各种元数据,将文本元素分割为适合模型注意力窗口的大小,

构建向量数据库,方便大模型调用。利用 RAG(检索增强生成)模型,帮助大语言模型知晓具有电

力 LcA 领域专业性和时效性的知识,包括最新的新闻、公式、数据等内容,增强大模型回答关于电

力行业 LcA 领域专业性问题与时效性问题的能力,主要用到的研究方法如下。

(1)文献资料法。通过阅读大量国内外研究检索增强生成的文章,确定将 RAG 技术作为提升

大语言模型回答电力行业 LcA 领域问题专业性与时效性问题的解决方法。文献调研显示,聚焦于此

领域的大模型是一个研究空白,将电力行业 LcA 的大模型应用于企业层面的分析,能够响应了重大

战略。该方法能够提升科研眼界、开阔研究思路、丰富研究角度。

(2)实验法。本文使用爬虫程序抓取各顶级期刊官网上近十年的文章,并通过元数据处理方

法,构建文章元数据的数据库。

(3)实证分析法。本文通过大量实际数据,来验证大模型调用电力行业 LcA 领域向量数据库

回答该领域专业性问题和时效性问题的有效性。

1.3.3 系统设计

系统设计三个模块,整体设计如图 1.4 所示,分别是数据处理模块、专业领域知识库构建模块

以及 chatbot 构建模块。数据处理模块主要包括对电力 LcA 这个特定领域的英文文献进行选择和初

步处理,而后将有关数据全部转化成结构化数据。知识库构建模块主要是将数据向量化并构建向量

知识库。chatbot 构建分为功能部分和前端部分,功能包括 openAI 基座的调用、知识库检索、在

线检索;前端部分为 web 可视化以及 UI 设计。

1.4 本章小结

第一章作为本论文的引言部分,主要围绕研究背景、研究目的与意义、研究内容与方法以及系

统设计进行了全面的阐述。首先,本章通过详细阐述当前大模型技术在内容解析领域的背景,指出

了电力行业生命周期评价的重要性,并强调了研究流程和研究方法。在这一基础上,本章进一步明

确了项目系统功能设计。综上所述,本章作为论文的引言部分,为整个研究提供了清晰的研究背

景、目的、意义、内容及方法概述,为后续章节的展开奠定了坚实的基础。

2.1 大语言模型

chatGpt 是由 openAI 发布的一种大语言模型,能够以问答的形式完成各类任务,包括接受文

字输入,理解自然语言,理解响应并模拟人类对话形式进行输出。再各个自然语言处理子任务具有

优异的表现。相比其他大语言模型拥有更丰富的知识,涵盖自然、社会科学、人文历史等多个领

域。chatGpt 在 Gpt3.5 的基础上引入了 RLhF(reinforcement learning from human feedback)

技术,通过将人类的日常对话的语言习惯嵌入模型,并引入价值偏好,使得模型的输出满足人类的

意图。微调过程分为预训练、监督微调、设计奖励模型和反馈优化。桑基韬等人根据 chatGpt 的对

话对象和定位将其应用分为四个层次:数据生成器、知识挖掘器、模型调度器和人机交互界面。在

多模态领域,Visual chatGpt、mm-ReAct 和 huggingGpt 让视觉模型与 chatGpt 协同工作来完成视

觉和语音任务。

除此以外,许多类 chatGpt 的大模型也同样在自然语言处理方面展示出来了较好的效果。

LLamA 是应该从 7billion 到 65billion 参数的语言模型,不需要求助于专有的数据集。清华大学

提出了一种基于自回归填充的通用语言模型 GLm 在整体基于 transformer 的基础上作出改动,在一

些任务的表现上优于 Gpt3-175b。

大语言模型,例如 Gpt 系列、LLama 系列、Gemini 系列等,在自然语言处理方面取得了显着的

成功,展示了超强的性能,但仍面临诸如幻觉、过时的知识、不可追溯的推理过程等挑战。2020

年,由 Lewis 等人引入的检索增强生成方法,通过整合来自外部数据库的知识,然后再继续回答问

题或生成文本。这个过程不仅为后续阶段提供信息,而且确保响应是基于检测到的证据的,从而显

着提高输出的准确性和相关性。在推理阶段从外部知识库动态检索信息使 RAG 能够解决诸如生成幻

觉等问题。RAG 与 LLm 的集成得到了迅速的应用,提高了自然语言处理任务的性能,并且使得模型

能够更好地利用外部知识和背景信息。

自 2020 年起,全球大语言模型在自然语言处理、计算机视觉、语音识别、推荐系统等领域表

现出卓越技术优势,市场规模持续增长,预计到 2028 年将达到 1095 亿美元。国外大模型产品研发

在 2021 年进入高速发展期,谷歌、openAI、英伟达、微软等公司都推出了自主研发的大模型,截

至 2023 年 7 月底,国外已发布了 138 个大模型。我国大模型发展迅速,与国际前沿保持同步,百

度、腾讯、清华大学、北京航空航天大学等单位都推出了自己的大模型,截至 2023 年七月底,我

国已发布 130 个大模型。

2.2 知识抽取

知识抽取主要分为命名实体识别和关系抽取两方面。命名实体识别(NER)任务,旨在识别与

特定语义实体类型相关联的文本跨度。该任务最早于 1991 年由 Rau 等人提出。随着信息理解、人

工智能等领域的顶级会议对 NER 任务的评测,其定义逐渐细化和完善,并逐渐成为自然语言处理

(NLp)领域的重要组成部分。然而,不同领域对实体类型的定义存在差异,因此 NER 模型的构建

取决于特定领域任务需求,通常涵盖人物信息、地点信息和组织机构信息等。对于英语、法语、西

班牙语等外语文本,通常采用单词作为基本单位,因此基于这些语言的 NER 模型主要关注单词本身

的语义特征和上下文信息。然而,中文语料文本通常由字符构成,需要考虑字符的语义信息和词汇。

特征,同时引入其他表征信息来提升模型性能,如中文分词(cwS)、语义部分标签(poS)等外部

信息,因此构建中文命名实体识别(cNER)模型更为复杂。目前,NER 任务的研究方法主要包括基

于词典和规则的方法、基于机器学习(mL)的方法以及基于深度学习(dL)的方法。

今天为什么讲座要那么长时间。

品书中文推荐阅读:玄幻:老婆绝世仙子,我却要逃婚绑定变美系统,绿茶在位面杀疯了诡异捞尸:开局暴打千年水鬼快穿:挖野菜系统崩溃了重生大小姐野又飒,撩翻禁欲大佬四合院:生那么多孩子!怪我咯穿越八零:上啃老下啃小中间啃闺商界大佬被撩后马甲娇妻套路多灵轩心动快穿之疯批反派在线作死快穿:钓系美人穿成黑月光之后开局策反病娇女BOSS的我无敌原神获得造物主系统的诸天之旅异世界:种地摆烂,怎么成领主了傅同学,我知道你暗恋我结婚两年未见面,军医老公回来了恶魂觉醒后,全宗门哭着求我原谅太师祖在下,孽徒桀桀桀!穿越年代文:工具人拒绝剧情哼,老娘才不想当什么丘比特火行天下末世向导:四大哨兵争着宠霹出个天尊化神老祖作香童是认真的豪门奶爸开局,养个外挂小奶娃穿成小炮灰的姐姐,改变命运摸一摸就能修仙,还要脸干什么!快穿:洗白的郎君他最宠夫国运:扮演张麒麟,我是女版小哥真千金驻岛开荒,嫁禁欲军官赢麻神卦狂妃又在撩人了世界与尔青云仙梦张悦的逆袭没错,我哥和我爹都是大佬末日重生:鬼观音她畸变成神抗战:从远征军开始亮剑:之超级军工系统从模拟开始成为诡异神灵小孕妻齁甜,被绝嗣大佬抱回家宠快穿之云华真君圆满之旅快穿:我家宿主超厉害的,嗷呜盗墓:修仙修到青铜门碎裂掌控被未婚夫送去和亲后,我把他刀了快穿之改变be世界一夜情后,穆总失控综影视之绿茶专门挖墙脚刑侦六组全家读我心后杀麻了,我负责吐槽原神:从摸鱼开始
品书中文搜藏榜:异兽迷城半相热恋快穿:我在异界客串路人甲家外火影世界的修士开局逃荒,女尊小混子她吃喝不愁和狂野总裁同房后他说我只是陌生人墓虎带着两宝去逃荒,我逃成了首富穿越乱世,我有空间我怕谁秦老六的生活日常奥特次元:羁绊之力全能站姐变爱豆后成顶流了高嫁京圈大佬,渣前任悔疯了!末世,女主她拿百亿物资杀疯了孤独摇滚!属于老兵的孤独!穿越知否之我是墨兰末世,恋爱脑杀了最后一位神性转魔王的异世界冒险脑叶公司:逐渐离谱的员工我,AI凡人闯仙界首辅肥妻有空间小宫女娇软妩媚,一路荣宠成太后后妈恶毒后妈爽,后妈日子过得好陆爷的闪婚新妻明日方舟:构史学主演她是一池春水文昭皇后传邪祟复苏,我为阴世主综漫:作品太刀,雪乃让我别写了玄学直播间,大佬又算命攒功德啦八零软妻人间清醒,首长别茶了!孤爱的哥哥居然是敌国皇亲快穿:战神大人只想找lp贴贴嫡女谋略:妖孽夫君请上门百字日记白日深诱职业魅魔,青梅校花不放过沈氏家族美人祭莫爷养的小公主我用重生埋葬他勾魂的眼神方舟里的后勤官快穿之鼠鼠我呀,太上进了四合院:我何雨柱,国之栋梁斗破:天命反派,云韵哭惨了皇后,你逃不掉的重生成草,我修妖也修仙我花钱超猛,系统嘎嘎宠我!
品书中文最新小说:明明是杰克的我为什么会在柯南啊将门嫡女重生之太子宠上天夫君凯旋纳新欢?男人不忠那就换闺蜜齐穿洞房夜攒够寿命一起死遁我靠清奇脑回路爆火成顶流团宠妹妹旺全家,全球大佬排队宠!萌学园:我靠库洛牌拯救遗憾重生宠妾进阶录之缘起综影视:她不懂情时间胶囊715快穿:万人迷她不做任务一朝穿越成乡下农女轮回录:魔族小妹拐了妖族团宠全网黑学渣竟是国宝级太子妃可是裴相她好男风啊安魂鬼事录帝白翎重生拒婚,首辅却一夜白头求原谅无敌公主:红棉大帝SSS级雄虫亲晕军雌上将家有小福宝,荒年也丰收我以柴刀问苍天综影视假期脑洞四合院:拒绝秦淮如,踢爆易中海破茧成凰前男友的追悔录九霄凌仙诀盗墓:我携永恒家族吞噬诸天在男神锅里沦陷的365天轮回修仙路在星际当直男但长成小白脸怎么办穿越七零:大佬,你的孩子重生了六零胖崽福运旺!全家躺赢万元户铁血盛唐:从废太子到万国至尊阴阳箓笔记新人写作技巧京圈姬爷的糖糖又想双修啦快穿之气运男主的黑月光风雨中的野菊花驯龙高手:天命代言人路人炮灰,但万人迷听懂毛茸茸说话,我成了警局团宠后娘不好当之四处找钱路重生后被京圈太子娇养了血族小公主觉醒后,狼王跪了转生索罗亚,被精灵老婆包围了梦幻西游之龙宫也疯狂武道霸主:小保安也能穿越?盗墓之当诡异绑定神豪系统水仙花的执念时爷破防了,每天都想求复婚!