品书中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

江寒心中忐忑起来。

难道苏婉莹对我的小心思,根本没有瞒着她?

或者说,没有瞒得过她?

甚至鬼丫头暗地里把下午的事情,透露给了夏雨菲?

以苏婉莹的诡计多端,这也不是完全不可能的!

那么,咱要不要坦白从宽呢?

可万一夏雨菲只是敏感过度,其实什么都不知道……

那岂不是此地无银、作茧自缚?

啊啊啊,有点头疼……

屏幕里。

夏雨菲忽然有点坐不住:“不行,明天我要去你那里一趟。”

江寒无语片刻,说:“想来你就悄悄地来,都说给我知道了,你还能查到些什么?”

“才不管,就要去。”夏雨菲小嘴一扁,卖了个萌。

江寒眨了眨眼。

女朋友主动送上门?

好像让人有点期待啊,这要是不好好“欺负”一番,就白长这么大了……

这么一想,居然还有点小“激动”?

好吧,先别想太多了,不然……

江寒温和一笑:“嗯,那就说好了,一定要来,不来的是小狗。”

夏雨菲:“……”

接下来,两人又聊了一会儿。

11点,夏雨菲准时上床睡觉。

挂断视频后,江寒的心情已经安定了下来。

不管发生什么事,都要守护好夏雨菲,对自己来说,她就是最后的港湾。

让她开心,让她快乐,最好能与痛苦永远绝缘……

接下来,江寒就振作精神,继续看书、做题。

直到12点多,才累得一头栽倒在床上。

然后,眼睛一闭,人事不知……

一夜无梦。

第二天,江寒起床后,继续进行机器学习方面的研究。

在另一个世界,“机器学习”这门学科,在几十年的发展历程中,逐渐形成了各种流派。

其中江湖地位最高的,有“五大门派”。

分别是符号主义、贝叶斯派、进化主义、行为类比主义,以及后起之秀:联结主义。

其中,联结主义的代表理论,正是“人工神经网络”、“深度学习”。

而在这个世界中,除了“联结主义”,另外四个“山头”已全部被人占领……

想要在机器学习领域深耕,掌握现有的技术,也是十分必须的。

至少可以触类旁通,也可以在写作论文时,合理引用,避免重复造轮子……

所以,江寒打算将其他分支的技术,全部系统地学习一遍,为以后开展“神经网络”的后续研究,夯实基础。

今天,江寒打算研究的,是贝叶斯派的“镇派武学”:“概率图”算法。

概率图模型是机器学习的一个独特分支,是图与概率论的完美结合。

在这种模型中,每个节点表示随机变量,边则表示概率。

在长期发展中,概率图算法也诞生过许多辉煌的成果。

例如“马尔可夫模型”,在语音识别方面,就长期处于主导地位,同时也广泛用于各种序列数据分析问题……

江寒先上网查找了一番,将所有关于“概率图算法”的论文收集起来。

一个半小时过去,总共搜集到了三十多篇相关论文。

江寒先粗粗地检阅了一遍。

其中不少东西,有点似曾相识,应该是以前听说过,或者重生前接触过。

但印象并不特别深,因为当年的自己,只对“深度学习”特别感兴趣。

其他方向基本上都是一带而过,并没有深入研究。

江寒开始一篇一篇地刷论文。

但很快他就发觉,“概率图”并不像预计中那么容易掌握。

难怪不少人一提到概率图模型,就谈虎色变,的确有点晦涩,不好理解。

按理说,以自己目前的脑力,研究现成的理论,并不该这么费劲。

可现在却有点举步维艰的意思。

究其原因……

江寒稍微一想,就明白了症结所在。

这个玩意对他来说,就是个全新的方向。

重生之前,对其完全没有了解,只是听说过有这么个东西。

对概念的掌握,以及各种细节的理解,连皮毛都算不上。

如果仅仅只是这样,那也就算了,只要稍微花点时间,迟早还是可以全盘悟透的。

但偏偏,他的数学基础虽然不错,深度却略显不够。

相关理论基础,以及知识的积累,也不算特别充足。

俗话说:巧妇难为无米之炊,所以……

好比做一道极度复杂的证明题。

有时候,明知结论是正确的,过程也很不容易推理。

而且更糟的是,许多必须用到的知识点,比如概念、定理、推论什么的,以前从来没有接触过。

这就相当于从采矿、种橡胶树开始学开车,不南辕北辙、难到极点才是怪事!

所以说,就算脑力提升了,也不是无所不能的。

再优秀的头脑,也需要一定的知识底蕴,才能发挥出应有的威能……

当然,要想解决这个矛盾,倒也不是特别困难。

一句话,学就完了。

俗话说:磨刀不误砍柴工……

接下来,江寒打算先好好充充电,学习一下相关的知识。

先打好基础,尤其是数学,回过头来再刷论文,才能事半功倍。

江寒先回了一趟学校,去寝室里翻找了一顿。

将从前买来的各种教材、参考书全都带走。

再次回到星河酒店后,就闭门不出,认真研读。

不得不说,他现在的学习效率十分惊人。

和以前比起来,不知提高了多少倍!

例如这本《概率论与数理统计》。

这是江寒从几十种同类教材中,精挑细选出来的,属于数学本科的专业教材。

比他以前学过的工科教材,涉及面更广,理论更深入,学习难度也更大。

一般的数学本科生,大约要用两到三个月刻苦攻读,才有可能学完。

至于能掌握多少,还要另说。

期末会不会挂科,还要看个人能力,再加上一点点运气……

而江寒呢?

只用了一个上午,就完全通读了一遍,并做完了书后全部习题。

以前很难理解的概念,一看就懂;许多复杂的推理过程,一想就通。

合上书以后,书里的知识点,也几乎全都历历在目,一点都没有遗忘的迹象。

而且还能举一反三、融会贯通。

课后习题基本没有他半分钟内解决不了的!

这样的学习效率,实在太吓人了。

看看时间已经中午,江寒就去2楼的餐厅饱餐了一顿。

饭后,江寒走出酒店,进入了附近的一个小区。

小区中央有个小广场,不少人在休闲、运动。

江寒在这里溜达了几圈,放松一会儿,也顺便消消食。

在这个过程中,他也没有停止思考。

一上午的《概率学与数理统计》没白看,关于“概率图”方面的问题,思考起来果然比原先顺畅了不少。

但可惜还是有点不够清晰、透彻。

江寒也不急躁。

毕竟现在这种情况,才是学习、科研的常态……

品书中文推荐阅读:帝师狂婿九龙战神天!夫君是个大反派股神传说之崛起都市修仙:千年后的我归来无敌了九阳丹帝仙声夺人桃源小龙医重生后,我宠上冷戾大佬特种兵之军神荣耀我在东京教剑道圣石的觉醒请婚书重生香江1981我用末日文字游戏给世界意志打工神医娘亲之腹黑小萌宝身家几万亿!你跟我说是学生懒神附体丹武至尊关于我变成了美少女这档子事废物乡干部竟是京城名少摄政王的小闲妻高武:忍者弱?没看过火影吧!穿成败家妻主后她躺赢了重生军嫂是神医异能觉醒的夏天重生火红岁月,我在空间里种田退婚的是你,我悟性逆天你哭什么诡秘:我是演员海贼王之草帽副船长穿成替嫁医妃后我被迫母仪天下笑破天传说我在末日废土来修仙废柴召唤师:逆天小邪妃极品修士高武:开局订婚,我终成首席!修行的世界少年捉鬼道长长生殿之王大杀四方重生回到75年重生2007,打工人,打工魂看好了,这一刀很帅!人到中年:娱乐圈的悠闲生活他都抡锤了,你还管他叫奶?惹上洛三少傲娇青梅忽然对我穷追不舍异能狱警,不稳绝不出手重生之女配的美满人生哥,这是直播,你收敛点儿!!高武:开场觉醒SSS级噬空灵焰
品书中文搜藏榜:长得美,他们自愿被撅也怪我咯?女装加小楠娘等于扳手,你跑不了宝树堂传奇之是谁要了他的命龙王殿:最强战神缠婚霸爱:强吻天价老公通灵毒后难忘人生直播之末世逃生撩妻入怀:学霸男神首席天价逼婚:老婆不准逃我为土地爷消失三年,青梅校花疯狂倒追我血棺镇魂韩娱,从财阀弃子开始宦海特种兵予你缠情尽悲欢银翎梦故事笑话不是,让你跟校花分手,你真分?新婚后,植物人老公抱住我庭院里花开几时休转生成为血族公主绝宠小娇妻浅笑说爱你闪婚强爱:腹黑首席小白妻许你一世烟雨我在三界收废品美女主播的抓鬼拍档锦绣医图之贵女当嫁廖医生的白玫瑰一品天尊他的温柔会上瘾三爷您的小夫人已上线失业后,我靠钓鱼实现人生自由神级技能:开局偷属性,逆天改命半岛人生制作人偶像竟是我自己华娱之从零到巨星重启封神,从成为天师开始!重生后我是大佬白月光万古第一龙铁血龙魂绝世枭龙侯门落魄嫡女翻身记军少花式宠妻女教师仕途危情1979,从乡村打造商业帝国绝品战魂傲娇总裁超给力斗罗:开局杀戮之都,被迫成魔
品书中文最新小说:乡村透视神医被病萝莉缠上,她不动手动嘴了和老婆转世后的修仙日常云想衣裳花想容之穿越大唐恋综摆烂,这个登徒子有点东西!开局被退婚,我靠透视横扫豪门黄帝传人死亡后我成了暴力系爱豆天降七个未婚妻,我不按套路出牌!滴水红颜军工狂人,开局手搓六代机港岛:修真枭雄被夺身份后我继承了修真界挖遍全球宝女总裁爱上穷小子,男老师爽翻了开局女友提分手,我转身攻略清纯校花人在民国当县长:我成了列强?全球战车:武魂百吨王大车吃小车一个退伍老兵的另类江湖陷入羞萝场的病弱小萝莉愈发长命机械师烧钱?幸好校花重金求子他大一新生,徒手接核弹合理吗?都市异能赏金猎人御兽:我瞎编技能,却教出了神兽乡野山村逍遥小神医天生烂桃花,开局遇到海后学姐人生若大梦中奖一个亿后,我成了公司救世主生日晚宴你失约,我娶学妹你发癫黑道风云之东南风云录!我掌握外星科技超越地球神豪:散财主播,全网美女求连线我和僵尸有个约会我的年少轻狂离婚后,她们都想撩我结婚我的朋友是神仙黄袍加身,我靠外卖系统笑疯全网重生成狗,你跑去吞噬怪物?重生秒赚百万,我把妻女宠上天!女帝竟是我电子女友麒麟苍穹:命运之轮我的毕业旅行:意外捡到个逃跑的女明星觉醒了虫族系统,被迫当大反派1968:刚娶女知青,你让我老登逆袭?枫月双刃重生当作曲人的我,横扫榜单!戈壁鱼猎:捡个旺夫女知青当老婆重返88,白眼狼前妻悔哭了!离婚后,我震惊娱乐圈,你哭啥?爷爷是魔修,我却在都市斩妖除魔凶案没目击者?那这些动物是什么